

Genetics of obsessivecompulsive disorder

Molecular Diagnostics
Symposium
February 28, 2025
Zürich

Nora Strom

LMU München, Humboldt Universität zu Berlin, Karolinska Institutet, Aarhus University

What is obsessive-compulsive disorder?

Types of genetic variation

Genetics of OCD – Insights from GWAS

Clinical translation

Obsessive-compulsive disorder (OCD)

Cycle of obsessions and/or compulsions

Variety of different symptoms in clusters

Cortico-striato-thalamocortical circuits

The Vicious Cycle of OCD

Obsessive-compulsive disorder (OCD)

Bimodal age of onset, sex differences in prevalence change with age

Treatment

Many different risk factors

CBT: Exposure and response prevention

Medication: Serotonine reuptake inhibitors (SSRIs)

Adapted from: Anholt, G., et al (2014). Psychological Medicine

Heritability of OCD

Population-based, multigenerational family clustering study of obsessive-compulsive disorder

OCD: Genetic risk (or heritability)
about 50%

Monogenic vs. Polygenic disorders

Monogenic: genetic in a single gene in a single gene in a quences on the Complicated in a quences d. Very

Polygenic: genetic variation in/regulating multiple genes (and ist consequences on the gene products) can, in combination, lead to disease.

RA Fisher (1918), polygenic model:

If many genes affect a trait, and alleles at each gene are randomly sampled each generation, the effects of alleles at these genes are small and produce a continuous, normally distributed trait in the population.

...or one major variant

...or one major variant

Combinatorial effects

Disease risk is influenced by effects at 100 loci

Each box represents 1 risk locus
White = 0 risk alleles
Blue = 1 risk allele
Red = 2 risk alleles

Cases don't look drastically different from controls!

→ Heterogeneity!

- Cases look more different from other cases than we would think!
- This gets exponentially "worse" as polygenicity increases.

Allele frequency, effect size, types of variation

Genome-wide association study

Logistic regressions for each SNP comparing cases vs controls

P < 5x10-8

OCD GWAS results

Meta-analysis of 28 cohorts identified 30 significant loci

All participating cohorts:

23andMe

MVP

OCGAS

IOCDF

UKBB

NORDIC

EGOS

iPSYCH

AGDS/QIMR

bioVU

EstBB

FinnGen

HUNT

MoBa

Michigan/Toronto

YalePenn

Chop

Coga

EPOC

Würzburg

PsychBroad

Genetics of psychiatric disorders

Relationship
between N_{cases} in
GWAS and
significant loci

P Sullivan & D Geschwind Defining the Genetic, Genomic, Cellular, and Diagnostic Architectures of Psychiatric Disorders (2019), Cell

11

GWAS SNP-

heritability: ~7%

Finding causal genes

Mapping is very complicated

- resolution (many correlated SNPs in one locus)
- Primarily noncoding
- Gene regulation

Finding causal genes

(A) Gene-based association test

(B) Enhancer-gene connection maps

(C) Integrative analysis of GWAS and xQTL data

(7) Conduct a series of positional and functional gene mapping analyses to prioritise OCD risk genes

		Gen	e-base	ed appro	oach				Association filter			Summary		
Gene	mBAT-combo	TWAS (Brain)	SMR		AS	PsyOPS	. Ind.		00	₫		-based oach	iation	ed gene lation
			Blood	Brain	PWAS	Psy(Cond. Ind.		COLOC	HEIDI		>1 gene-based approach	Association filter	Prioritized gene association
A												1	/	1
В														
С								→			\rightarrow	1	/	1
D												/		
E												/		
F												1	/	1

Strom NI et al., Genome-wide association study identifies 30 obsessive-compulsive disorder associated loci, accepted at Nature Genetics, 2025

OCD GWAS results

Closer look at significant regions

Zooming in

SNP rs78587207:
4 putative causal genes: *CTNND1*, *CLP1*, *TMX2*, *ZDHHC5*

Gene-based results

25 likely causal genes

Tissue expression

Strom NI et al., Genome-wide association study identifies 30 obsessive-compulsive disorder associated loci, accepted at Nature Genetics, 2025

Genetic relatedness

Genetically correlated with 63/112 phenotypes

Genetic relatedness

OCD clusters
together with
Anorexia and
Tourette syndrome

-0.2

-0.03

0.14

0.31

0.49

0.66

0.83

Comorbidity

iPSYCH sample onlyOCD: 366cases OCD+MDD: 1052 cases OCD+ASD: 388 cases OCD+ADHD: 443 cases OCD+multiple: 429 cases

Specificity

Genetic risk acts on different levels from very broad (general psychiatric risk) to very specific (symptoms)

Rare genetic signal in OCD

~1 in 20 OCD cases have a rare coding variant that substantially contributes to their disorder

Exome sequencing in obsessive-compulsive disorder reveals a burden of rare damaging coding variants

OCD cases = 1313 (trios) + 644 additional cases

Small rare genetic variants:

- Rare coding single nucleotide variants (SNVs)
- indels

Halvorsen MW et al., Exome sequencing in obsessivecompulsive disorder reveals a burden of rare damaging coding variants, Nature Neurocience 2021 Molecular Psychiatry

www.nature.com/mp

ARTICLE OPEN

A burden of rare copy number variants in obsessive-compulsive disorder

OCD cases = 2248

Large rare genetic variants:

Rare copy number variants (CNVs)

Halvorsen MW et al., A burden of rare copy number variants in obsessive-compulsive disorder, Molecular Psychiatry 2024

Summary OCD genetics

We identified the first genetic variants ever associated with OCD

- OCD is highly genetic
 - Twin studies: 50% heritability
 - GWAS: 7% heritability
- We found 30 loci associated with OCD (common SNPs)
- 25 credible genes implicated
- Rare genetic variants also seem to have an impact (less studied)
- Genes expressed in brain areas and cell types involved in the CSCT-circuitry
- Genetically correlated with other traits, especially with Tourette syndrome, anorexia & anxiety

Limitations:

- Mechanistic understanding from gene → disorder still limited
- Many samples not deeply phenotyped (self-reported diagnosis)
- Individuals only from European ancestry

Drug target discovery/repurposing

Drug development including evidence from human genetics are twice as successful

- **Depression GWAS** identified possible new therapeutic targets:
 - anti-cancer therapies,
 - modafinil (reduces daytime sleepiness)
 - pregabalin (pain management)

Pharmacogenetics

Using genetic variants to predict a patient's response to a particular drug

CYP2D6 and CYP2C19 for antidepressants and antipsychotics

Effects on antidepressants

Metabolism of venlafaxine, fluoxetine, paroxetine

Metabolism of escitalopram, citalopram, sertraline (poor metabolizers increased side effects, ultrarapid metabolizers

Polygenic risk scores

Common genetic findings are not commonly used in clinical pratice

PRS Patient A's score Patient A SCZ BD **MDD Clinical Dx Treatment option** DSM-5 Lithium □ SCZ Manic/depressive episodes (+) **∀**BD ··· **✓**SGAs MDD \square Other (Lamotorigine,,,)

Ikeda et al., Polygenic risk score as clinical utility in psychiatry: a clinical viewpoint. Journal of human genetics, 2020

But they might help to guide differential diagnosis (not used in the clinic yet!).

Genetic risk scores (from **GWAS**) do not have sufficient power for future diagnosis

Genetic testing and counseling

Genetic testing of rare genetic findings might be useful for some psychiatric disorders

- Known rare genetic variants for neurodevelopmental disorders and schizophrenia are of relevance in genetic counselling
- European network: **EnGagE** (Enhancing Psychiatric Genetic Counseling, Testing, and Training in Europe)

Thank you!

All participating cohorts:

23andMe

MVP

OCGAS

IOCDF

UKBB

NORDIC

EGOS

iPSYCH

AGDS/QIMR

bioVU

EstBB

FinnGen

HUNT

MoBa

Michigan/Toronto

YalePenn

Chop

Coga

EPOC

Würzburg **PsychBroad**

We want to thank all participants and individual study sites!

Dr. Jeremiah Scharf Dr. Manuel Mattheisen

& many more!

Questions?

WHAT O.C.D. IS NOT : about my desk. Itookan online

30