





# The German Cancer Research Center (DKFZ) in Heidelberg Innovative Cancer Research in a Historic City

#### Career Opportunities at all Levels:

- Professors
- Junior Group Leaders
- Postdocs
- PhD and MSc Students

www.dkfz.de



# Cervical Cancer: Viruses, Immunization and Screening

Symposium Molecular Diagnostics 2025 Zurich, 27.02.2025

Dr. Nobila Ouédraogo Cancer Prevention Unit – German Cancer Research Center



#### **Structure**

- 1. Introduction
- 2. HPV Molecular and Biological Insights
- 3. Immunization
- 4. Screening and Diagnostics
- 5. Future Directions



#### slido

Please download and install the Slido app on all computers you use





# Join at slido.com #16116340

① Start presenting to display the joining instructions on this slide.

#### slido

Please download and install the Slido app on all computers you use





# 1-Which statements about cervical cancer and its prevention are true?

① Start presenting to display the poll results on this slide.

## 1. Introduction



#### 1.1. Cervical cancer

**Cervical cancer** = C53 –

Malignant neoplasm of cervix uteri [ICD-10]

#### Types of cervical cancer:

- Squamous cell carcinoma
- Adenocarcinoma
- Mixed (carcinoma or adenosquamous carcinoma)

**Variable progression** (10 – 20 years from infection to cervical Cancer).





### 1.2. HPV as causative agent of cervical cancer

**1842** – Suggestion of an infectious cause of cervical cancer by **D. A. Rigoni-Stern** (1810–1855).

**1970s** → Discovery of HPV by German virologist **Harald zur Hausen** 

**1983** – **1984** → Isolation of HPV-16 and 18 DNA from cervical cancer tissues

1996: Classification of HPV as a cause of cervical cancer (IARC).



#### 1.3. From HPV-Infection to Cervical Cancer



Campos et al. 2021



#### 1.4. Risk factors of cervical cancer

**HPV-related risk factors:** Persistent infection with high-risk HPV types (HPV-16 and HPV-18) + viral load.

**Behavioral and lifestyle risk factors:** e.g. Early sexual activity, multiple sexual partners, smoking, long-term use of oral contraceptives, high parity.

Biological risk factors: e.g. HIV infection, Immunosuppressive therapy.

Medical and socioeconomic risk factors: e.g. Co-infection with other sexually transmitted infections (STIs), poor socioeconomic status.



#### 1.5. Global Burden of Cervical Cancer



Incidence: ~ 604.000 news cases annually

**Mortality**: ~ **342.000** deaths annually

Over **90%** of cases and death in **LMICs** 

Singh et al. 2020



# 2. HPV - Molecular and Biological Insights



#### 2.1. Evolutionary Relationship between HPV



Doorbar et al. 2012



### 2.2. Viral Structure - Genome Organization



Nelson & Mirabello 2023



# 2.3. Implications for Prevention and Treatment

**Prophylactic Vaccines:** Target the L1 protein to elicit neutralizing antibodies, preventing initial infection.

Screening: HPV DNA testing identifies high-risk infections.

**Therapeutic Targets:** Future treatments may target E6 and E7 oncoproteins or restore p53 and Rb function.



## 3. Immunization



# 3.1. HPV Prophylactic Vaccines

First-Generation Vaccines: Virus-Like Particles (VLPs) – L1 capsid protein, ~70% of cervical cancer cases.

Gardasil 4 (2006): HPV-16, HPV-18, HPV-6, and HPV-11;

**Cervarix** (2007): HPV-16 and HPV-18;

Cecolin (2019): HPV-16 and HPV-18.

Second-Generation Vaccines: Virus-Like Particles (VLPs) – L1 capsid protein, ~90% of cervical cancer cases.

**Gardasil 9** (2015): HPV-16, HPV-18, HPV-31, HPV-33, HPV-45, HPV-52, HPV-58 (high-risk types), and HPV-6, HPV-11



# 3.2. Vaccines Efficacy and Effectiveness

**High Efficacy** of ~95–100% against precancerous lesions

**Effectiveness** of ~90% in HPV infections and high-grade cervical lesions in countries with high vaccine coverage (e.g., Australia, Sweden, UK).

Effectiveness Determinants: vaccine uptake, adherence to vaccine schedule and population factors.



# 3.3. HPV Vaccination Programm Status



Introduction Status

Introduction Year

Delivery strategy Targeted Sex

HPV1 coverage

HPVc coverage

Schedule (interval between doses)

Global Map area

Country profile area

Coverage Analysis Global/Regional

Effectiveness studies

194

Total countries reported

| HPV national schedule | No. of countries |
|-----------------------|------------------|
| A. Yes                | 146              |
| B. Yes (Partial)      | 2                |
| C. No                 | 46               |

Last update:

2/4/2025 11:11:12 A...





## 3.4. HPV Vaccination Target Groups



Introduction Status

Introduction Year

Targeted Sex

Delivery strategy

HPV1 coverage

HPVc coverage

Schedule (interval between doses)

Global Map area

Country profile area

Coverage Analysis Global/Regional

Effectiveness studies

148

Total countries reported

| HPV Sex    | No. of countries |  |
|------------|------------------|--|
| Female     | 72               |  |
| Both sexes | 76               |  |

Last update:

2/4/2025 11:11:12 A...





#### 3.5. HPV Vaccination Schedule



Introduction Status

Introduction Year

Delivery strategy

Targeted Sex

HPV1 coverage

HPVc coverage

Schedule (interval between doses)

Global Map area

Country profile area

Coverage Analysis Global/Regional

Effectiveness studies

| Interval_doses      | No. of countries |
|---------------------|------------------|
| 1 dose              | 67               |
| 2 doses (12 months) | 4                |
| 2 doses (6 months)  | 73               |
| Not yet introduced  | 46               |
| Unknown schedule    | 4                |

Last update:

2/4/2025 11:11:12 A...





### 3.6. HPV Vaccine Delivery Strategies





#### 3.7. HPV Vaccination Coverage





# 4. Screening and Diagnostics



## 4.1. Common Screening Methods

Pap Smear (Cytology): Detects existing abnormal cells using a microscope

**Visual Inspection with Acetic Acid (VIA):** Swab of the cervix with diluted acetic acid + visually inspect for white-colored lesions by health providers.

**HPV Testing:** HPV DNA testing (PCR, hybrid capture), RNA testing (E6/E7 mRNA)



### 4.2. Common HPV Tests

| Biomolecule | Test Name                             | Target                      | Number of HPV types |
|-------------|---------------------------------------|-----------------------------|---------------------|
| DNA         | Hybrid Capture® 2 (hc2)               | Full HPV genome             | 13                  |
| DNA         | Cervista HPV HR                       | E6/E7                       | 14                  |
| DNA         | RealTime High Risk HPV assay          | L1                          | 14                  |
| DNA         | BD Onclarity HPV                      | E6/E7                       | 14                  |
| DNA         | Cervista HPV 16/18                    | E6/E7                       | 2                   |
| DNA         | Anyplex II HPV28                      | L1                          | 28                  |
| DNA         | INNO-LiPA® HPV<br>Genotyping Extra II | L1                          | 32                  |
| DNA         | PapilloCheck                          | E1                          | 24                  |
| RNA         | Aptima HPV Assay                      | E6/E7 mRNA                  | 14                  |
| Protein     | OncoE6 HPV Test                       | HPV 16/18 E6<br>oncoprotein | 2                   |

Bartosik et al. 2024



# 4.3. Cervical Cancer Screening Strategies

| Screening Strategy                       | Screening<br>Interval | Cost-<br>Effectiveness |
|------------------------------------------|-----------------------|------------------------|
| Primary HPV Screening                    | Every 5 years         | Most cost-effective    |
| HPV Screening with Triage                | Every 5 years         | Cost-effective         |
| Visual Inspection with Acetic Acid (VIA) | Every 3 years         | Less cost-effective    |
| Cytology-Based Screening                 | Every 3 years         | Less cost-effective    |

Simms et al. 2023



#### 4.4. Recommendations and Good Practices

**General population of women:** HPV DNA detection - in **screen-and-treat approach** or in **screen, triage and treat approach** starting at age of 30 years with 5 to 10 years screening interval.

Women living with HIV: HPV DNA detection - screen, triage and treat approach - starting at age of 25 years with 3 to 5 years screening interval.

**Good practice:** Once a decision to treat a woman is made - it is good practice to treat as soon as possible **within six months** to reduce the risk of loss to follow-up.



# 4.5. Implementation of cervical cancer Screening







# 4.6. Implementation of cervical cancer Screening



Bruni et al. 2022



### 4.7. Advances in Molecular Diagnostics

Biomarkers for progression risk, e.g. p16INK4a, Ki-67, p16/Ki-67

**HPV genotyping for risk stratification:** Primary Screening, Triage of HPV-Positive Women, Post-Treatment Surveillance, Vaccine Impact Studies

**Self-sampling methods and their clinical utility:** Brush-based devices (e.g., Evalyn Brush), swabs, lavages.



## 4.8. Integrating Screening with Immunization

Rationale for integration: Even with vaccination, screening remains necessary

#### Age appropriated strategies:

Young adolescents (9–14 years old): Focus on HPV vaccination.

Young adults (20–30 years old): HPV vaccination +/- Screening.

Women ≥30 years: HPV-based screening with intervals of 5–10 years.

Screening Modifications for Vaccinated Women: less frequent screening or raising the starting age of screening



### **5. Future Directions**



#### 5.1. Cervical Cancer Elimination Goal

Rational: High global burden, Preventability and treatability

WHO's 90 – 70 – 90 targets on cervical cancer elimination

Success stories worldwide

Australia, Nordic countries (Sweden, Norway, Denmark, Iceland), Rwanda



#### 6.2. Readiness Assessment in Europe



Karamousouli et al. 2025



#### **5.3.Next-Generation Prevention Tools**

#### Third-Generation of HPV Vaccines, e.g.:

Pan-HPV vaccines

Therapeutic HPV vaccines

Thermostable HPV vaccines

# Artificial Intelligence (AI) in cytology and HPV test interpretation, e.g.:

Automated Screening (e.g. Al assisted Pap smear)

Al in HPV Test Interpretation (e.g. Al powered HPV DNA Testing)

Al for Risk Stratification



#### slido

Please download and install the Slido app on all computers you use





# Join at slido.com #16116340

① Start presenting to display the joining instructions on this slide.





# 2-Which statements about cervical cancer and its prevention are true?

① Start presenting to display the poll results on this slide.

#### slido

# Please download and install the Slido app on all computers you use





3-How would you rate this course overall (1 - Poor / 2 - Fair / 3 - Good / 4 - Very Good / 5 - Excellent

① Start presenting to display the poll results on this slide.





GERMAN
CANCER RESEARCH CENTER
IN THE HELMHOLTZ ASSOCIATION