

Genetics of neurodevelopmental disorders (NDDs)

Dr. rer. nat. Anne Gregor, Department of Human Genetics

WINSELSPITAL Which NDDs are relevant for genetic testing?

Intellectual disability and global developmental delay

• Developmental and epileptic encephalopathies

Autism spectrum disorders (ASD)

Epilepsies

- Attention deficit/hyperactivity disorders (ADHD)
- Specific learning disorders
- Communication disorders
- Motor disorders

chromosomal / monogenic

multifactorial/genetically complex

INSELSPITAL Genetic heterogeneity of neurodevelopmental disorders

UNIVERSITÄTSSPITAL BERN BERN UNIVERSITY HOSPITAL

- Knowledge about cause of symptoms/disorder
- better prognosis of clinical course
- potential preventive (screening) tests and checkups
- assessment of recurrent risks
 - \rightarrow de novo or inherited?
 - \rightarrow poss. pre-implantation diagnostics / prenatal diagnostics
- consequences for specific therapies (e.g. antiepileptic drugs)
- no further diagnostic odyssey
- · communication with other affected families

INSELSPITAL UNIVERSITÄTSSPITAL BERN BERN UNIVERSITY HOSPITAL

Insel Gruppe – Genetics of Neurodevelopmental Disorders

INSELSPITAL Recurrent microdeletions and -duplications

Microdeletion syndromes 1991-2006 (pre- array)	«new», recurrent microdeletions and -duplications
1p36.3 deletion syndrome	1q21.1 deletion/duplication
2q37 Albright-Osteodystrophy-like syndrome	2q11.2 deletion/duplication
4p16 Wolf-Hirschhorn syndrome	2q21.1 deletion
5p15 Cri-du-chat syndrome	3q29 deletion/duplication
7q11.23 Williams(-Beuren) syndrome	8p23.1 deletion/duplication
15q12 Prader-Willi / Angelman syndromes	15q11.2 deletion/duplication
17p13.3 Miller-Dieker syndrome	15q13.3 deletion/duplication
17p11.2 Smith-Magenis syndrome	16p11.2 deletion/duplication
22q11.2 deletion / DiGeorge / Shprintzen syndrome	16p12.1 deletion/duplication
	16p13.11 deletion/duplication
	17q12 deletion
	17q21.31 deletion

INSELSPITAL Next Generation Sequencing: a booster in NDD gene identification

LETTERS

A de novo paradigm for mental retardation

Lisenka E L M Vissers^{1,2}, Joep de Ligt^{1,2}, Christian Gilissen¹, Irene Janssen¹, Marloes Steehouwer¹, Petra de Vries¹, Bart van Lier¹, Peer Arts¹, Nienke Wieskamp¹, Marisol del Rosario¹, Bregje W M van Bon¹, Alexander Hoischen¹, Bert B A de Vries¹, Han G Brunner^{1,3} & Joris A Veltman^{1,3}

RTICLE 2011

doi:10.1038/nature10423

Deep sequencing reveals 50 novel genes for recessive cognitive disorders

Hossein Najmabadi^{1,2}, Hao Hu³*, Masoud Garshasbi^{1,3}*, Tomasz Zemojtel⁴, Seyedeh Sedigheh Abedini¹, Wei Chen^{3,5}, Masoumeh Hosseini¹, Farkhondeh Behjati¹, Stefan Haas⁴, Payman Jamali⁶, Agnes Zecha³, Marzieh Mohseni¹, Lucia Püttmann³, Leyla Nouri Vahid¹, Corinna Jensen³, Lia Abbasi Moheb^{1,3}, Melanie Bienek³, Farzaneh Larti¹, Ines Mueller³, Robert Weissmann³, Hossein Darvish¹, Klaus Wrogemann^{3,7}, Valeh Hadavi², Bettina Lipkowitz⁸, Sahar Esmaeeli -Nich³, Dagmar Wieczorek⁸, Roxana Kariminejad², Saghar Ghasemi Firouzabadi¹, Monika Cohen⁹, Zohreh Fattahi¹, Imma Rost¹⁰, Faczeh Mojahedi¹¹, Christoph Hertzberg¹², Atefeh Debghan¹³, Anna Rajab¹⁴, Mohammad Javad Soltani Banavandi¹, Julia Hoffer³, Masoumeh Falah¹, Luciana Musante², Vera Kalscheuer³, Reinhard Ullmann³, Andreas Walter Kuss³+, Andreas Tzschach³, Kimia Kahrizi¹ & H. Hilger Ropers³

Trio sequencing

Homozygosity mapping

2010

nature

genetics

INSELSPITAL Gene and syndrome identification in the last decades

UNIVERSITÄTSSPITAL BERN BERN UNIVERSITY HOSPITAL

Bamshad et al., Mendelian Gene Discovery: Fast and Furious with No End in Sight, AJHG, 2019

NSELSPITAL Monogenic NDDs (<u>https://sysndd.dbmr.unibe.ch/</u>)

BERN UNIVERSITY HOSPITAL

Sys v01.0-	dof5865	Tables -	Analyses *	Help *				
							Welcome	to SysND
			the	e expert curated	databa	se of gene di	isease relat	ionships in n
			Search by	genes, entities and dise	ases using	names or identifie	rs	
Current datab	ase stat	istics, las	st update: 09	.11.2023			_	NDD com
Entities								autism s
Category				Count		Details		
Definitive			1783			(show)		This clinic
Moderate				132		show		about 2%
Limited				1458	(show)			SvsNDD
								expert c
Genes (links	to Pane	els)						
Category				Count	Details			We define
Definitive				1616		show	which are	
Moderate				93	(show)			The clinic
Eimited				1274		(show)	associatio	
								symbols:
New entities								Definitive
Entity	Sy	mbol	Disease		inh.	Category	NDD	The class
sysndd:4156	NL	DE1	Microhydrane	ncephaly	AR	0	0	In the Pa
sysndd:4155	BS	GL2	Encephalopathy, progressive, with or		AR		0	entities to
sysndd:4152	(20	AH2)	Wieacker-Wol	ff syndrome, female-restr)	8		0	The SysN
sysndd:4137	DE	PDC5)	developmenta	and epileptic encephalo)	AR	0	0	compone
© 0			0		())		a	

- Entities: gene inheritance disease
- filtering possibilities: e.g. phenotypes, inheritance patterns
- Nov 2023: 1616 confirmed NDD genes (Aug 2016: 893 genes)
 - 60% autosomal-recessive
 - 33% autosomal-dominant
 - 7% X-linked
- plus >1300 published candidate genes

INSELSPITAL UNIVERSITÄTSSPITAL BERN BERN UNIVERSITY HOSPITAL

- single genes
- known (familial) variants

Next-Generation-Sequencing

- Panel-Sequencing (~ 5-100 genes)
- clinical exome/mendeliome: ~ 8000 known disease genes
- (Trio) Exome-Sequencing: all coding genes (~ 20.500)
- genome sequencing: coding and non-coding regions

Frequencies in patients and/or controls

- variant included as (likely) pathogenic in databases such as ClinVar, HGMD etc. or literature
- variant absent or very rarely in control databases such as gnomAD
- variant absent or very rarley in in-house data

Location and nature of variant

- e.g. truncating or missense
- located in functional domains or mutational hotspots

Segregation

• *de novo* or segregating with the phenotype

Functional effects

- mutational consequences by prediction programs (e.g. CADD score, PolyPhen2, Mutation Taster, REVEL)
- available information on gene/protein
- functional validation

INSELSPITAL ACMG classification

- class 1: benign •
- class 2: likely benign ۲
- class 3: variant of unknown significance ٠ (VUS)
- class 4: likely pathogenic •
- class 5: pathogenic ٠

Evidence of pathogenicity		Category					
Very strong	ISMd	 Null variant (nonsense, frameshift, canonical ±1 or 2 splice sites, initiation codon, single or multiexon deletion) in a gene where LOF is a known mechanism of disease. Caveats: Beware of genes where LOF is not a known disease mechanism (e.g., GFAP, MYH7) Use caution interpreting LOF variants at the extreme 3' end of a gene Use caution with splice variants that are predicted to lead to exon skipping but leave the remainder of the protein intact Use caution in the presence of multiple transcripts 					
	ISd	 Same amino acid change as a previously established pathogenic variant regardless of nucleotide change Example: Val→Leu caused by either G>C or G>T in the same codon Caveat: Beware of changes that impact splicing rather than at the gmino acid/protein level 					
	PS2	De novo (both maternity and paternity confirmed) in a patient with the disease and no family history Note: Confirmation of paternity only is insufficient. Egg donation, surrogate motherhood, errors in embryo transfer, and so on, can contribute to non maternity.					
trong	623	Well-established in vitro or in vivo functional studies supportive of a damaging effect on the gene or gene product Note: Functional studies that have been validated and shown to be reproducible and robust in a clinical diagnostic laboratory setting are considered the most well established					
8	PS4	The prevalence of the variant in affected individuals is significantly increased compared with the prevalence in controls Note 1: Relative risk or OR, as obtained from case-control studies, is >5.0, and the confidence interval around the estimate of relative risk or OR does not include 1.0. See the article for detailed guidance. Note 2: In instances of very rare variants where case-control studies may not reach statistical significance, the prior observation of the variant in multiple unrelated patients with the same phenotype, and its absence in controls, may be used as moderate level of evidence.					
	PM1	Located in a mutational hot spot and/or critical and well-established functional domain (e.g., active site of an enzyme) without benign variation.					
	PM2	Absent from controls (or at extremely low frequency if recessive) (Table 6) in Exome Sequencing Project, 1000 Genomes Project, or Exome Aggregation Consortium Caveat: Population data for insertions/deletions may be poorly called by next-generation sequencing.					
ate	PM3	For recessive disorders, detected in trans with a pathogenic variant Note: This requires testing of parents (or offspring) to determine phase.					
Moder	PM4	Protein length changes as a result of in-frame deletions/insertions in a nonrepeat region or stop-loss variants					
	PMS	Novel missense change at an amino acid residue where a different missense change determined to be pathogenic has been seen before Example: Arg156His is pathagenic; now you observe Arg156Cys Caveat: Beware of changes that impact splicing rather than at the amino acid/protein level. 					
	PM6	Assumed de novo, but without confirmation of paternity and maternity					

- \rightarrow Trio exome/genome sequencing: patient plus healthy parents
- \rightarrow filtering for inheritance patterns

de novo

homozygous/compound heterozygous X-chromosomal: maternally inherited (autosomal-dominant inheritance)

pathogenic variant in known ID gene or candidate gene?

Deciphering Developmental Disorders Study in the UK

→pathogenic, *de novo* variants in the coding sequence in 42% of 7.000 patients

Distribution *de novo* and recessive causes depends on ancestry and familial consanguinity

de novo coding, known or unknown gene
 recessive coding, known or unknown gene

INSELSPITAL Different questions when making a genetic diagnosis

multiple diagnoses .

FÄTSSPITAL BERN BERN UNIVERSITY HOSPITAL

Variants in unkown genes: a tiny step from research to diagnostics

- girl, 10 years
- epilepsy
- severe ID, no speech
- microcephaly
- movement disorder
- → Trio-exome: *de novo* missense variant in *RHOBTB2*

at that time:

- atypical RhoGTPase, implicated in cancer, not yet in NDDs
- highly expressed in the nervous system
- gnomAD constraint scores: z score 2.66, pLI score 0.01

SPITAL «Genetic» confirmation of RHOBTB2 as a new disease gene

- matchmaking via **Genematcher**: 9 further cases with *de novo* variants in *RHOBTB2*
- similar phenotype: early-onset epilepsy, severe ID, neurologial anomalies, microcephaly

IVERSITY HOSPITAL

WINSELSPITAL UNIVERSITÄTSSPITAL BERN BERN UNIVERSITY HOSPITAL

 Bang sensitivity (seizure susceptibility) upon pan-neuronal RhoBTB-overexpression in Drosophila

 \rightarrow close link between diagnostics and research aids discovery of novel NDD-associated genes

WINSELSPITAL UNIVERSITÄTSSPITAL BERN BERN UNIVERSITY HOSPITAL

Assessment of variant pathogenicity: Missense variants in *LHX2*

172kb Deletion of LHX2 + 1 exon of DENND1A

gnomAD constraint scores:

pLI = 1 Z = 2.03

key clinical features

- intellectual disability
- behavioral anomalies

Correct variant?

- microcephaly

INSELSPITAL **Assessment of variant pathogenicity: Impaired transactivation capability of LHX2**

 \rightarrow 4 missense variants classified as likely pathogenic \rightarrow loss-of-function mechanism likely also for missense variants →haploinsufficiency most likely disease mechanism

BERN UNIVERSITY HOSPITAL

Correct variant?

Assessment of variant pathogenicity: Episignatures

- variants in chromatin-regulating genes (and transcriptional regulators) affect DNA-methylation
- DNA methylation can be assessed genome-wide using microarrays
- specific methylation signatures for disease genes/gene groups (n > 70)
- can be used to aid classification of VUS

→ functional assays can help improve variant classification and decrease number of VUS

Assessing variant pathogenicity: Incomplete penetrance

- first year: normal development
- regression, severe ID, spasticity
- episodic joint swellings, jaundice sclerae, red skin patches
- family: two early deceased siblings and maternal aunts
- exome: variant in IFIH1 p.(Arg779His), inherited from healthy mother but reported as pathogenic in literature
 - → Incomplete penetrance
 (13,5% of variant carriers are asymptomatic (Rice et al., Hum Mutation, 2020))

Aicardi-Goutieres syndrome 7

- IFIH1: autosomal-dominant AGS
- progressive encephalopathy (often after initially normal development)
- infect-like anomalies
- neurological symptoms, spasticity, dystonia
- enlarged liver, elevated liver enzymes

Reduced penetrance in a family with Aicardi-Goutieres syndrome

- \rightarrow *de novo* occurence important factor for pathogenicity
- \rightarrow BUT: (mild) autosomal dominant NDDs can be inherited
- \rightarrow incomplete penetrance (also possible for severe disorders)
 - \rightarrow challenge for variant interpretation, genetic counselling and prenatal diagnostics

→ genotype-phenotype correlations
 → both autosomal-dominant (de novo) and autosomal-recessive inheritance

Genes with both autosomal-recessive and autosomal-dominant inheritance patterns

Matching

inheritance pattern?

- some same/similar phenotypes
- some different phenotypes

VINSELSPITAL UNIVERSITÄTSSPITAL BERN BERN UNIVERSITY HOSPITAL

Example: Borjeson-Forssman-Lehmann syndrome

Matching inheritance pattern?

in males

- X-chromosomal-recessive variants in PHF6
- variable ID
- typical facies
- obesity, gynecomastia
- hypogonadism, small genitals
- tapering fingers, short toes
- female carriers asymptomatic or only midly
 symptomatic
- XI skewed in half of the female carriers

in females

- *de novo* variants in *PHF6*
- moderate to severe ID
- typical facies
- dental anomalies
- finger and toe deformities
- oligo- or amenorrhoe
- linear skin hyperpigmentation
- XI skewed in blood, random in fibroblasts

→variants in one gene can cause different phenotypes or diseases
→genotype-phenotype correlations

 \rightarrow don't stop searching for other similar cases when the phenotype does not seem to fit to the gene

 \rightarrow one gene can be associated with multiple inheritance patterns

 \rightarrow SysNDD database: 1616 genes associated with 1783 diseases

WINSELSPITAL Challenge: Mulitple diagnosis

N Engl J Med. 2017 Jan 5;376(1):21-31.

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Resolution of Disease Phenotypes Resulting from Multilocus Genomic Variation

Jennifer E. Posey, M.D., Ph.D., Tamar Harel, M.D., Ph.D., Pengfei Liu, Ph.D., Jill A. Rosenfeld, M.S., Regis A. James, Ph.D., Zeynep H. Coban Akdemir, Ph.D., Magdalena Walkiewicz, Ph.D., Weimin Bi, Ph.D., Rui Xiao, Ph.D., Yan Ding, M.D., Fan Xia, Ph.D., Arthur L. Beaudet, M.D., Donna M. Muzny, M.S., Richard A. Gibbs, Ph.D., Eric Boerwinkle, Ph.D., Christine M. Eng, M.D., V. Reid Sutton, M.D., Chad A. Shaw, Ph.D., Sharon E. Plon, M.D., Ph.D., Yaping Yang, Ph.D., and James R. Lupski, M.D., Ph.D., D.Sc.

Correct gene?

Does the phenotype fit?

Retrospective analysis of exome data of 7374 patients: \rightarrow 4,9% molecular diagnosis at 2 or more disease loci

Correct variant?

- post-zygotic occurence of the genetic alteration
- only part of the body cells is affected
- tissue-specificity
- mosaics often not detectable in blood

- \rightarrow Don't stop at blood when you think it might be a mosaic
- \rightarrow Don't stop searching for more variants if the phenotype is «atypical»

 \rightarrow Contribute to characterizing phenotypic spectra and natural histories

NSELSPITAL What do we miss with NGS?

- Boy, 5 years
- walking with 16 months
- speech delay, 5-10 single words
- Hyperactivity
- growth normal
- MRI normal
- array and trio-exome normal

example picture https://en.wikipedia.org/wiki/Fragile X syndrome

Fragile X syndrome

- repeat expansion in the FMR1-٠ promoter (premutation 50-180 repeats, full mutation >200)
- X-linked •
- BUT: also ~50% of females with full • mutations are symptomatic
- intellectual disability, speech > motor • delay
- behavior: aggressivity, autism •
- after puberty: macroorchidism •

- diagnostics of NDDs is more than just diagnostics
- a genetic diagnosis requires close interaction between clinics and diagnostics
- genetics of NDDs is work in progress and needs continuous learning