Polygenic risk scores

Are they ready for clinical implementation?

Rainer Malik
Molecular Diagnostics Symposium
Zürich
March 2023

- Definitions
- Polygenic Risk Scores
- Definition
- History
- Practical Examples
- Transferrability
- Translational perspective
- Summary
- Pros
- Cons

Definitions (Genotyping - SNP)

$\sim 40 \mathrm{M}-50 \mathrm{M}$ SNPs in human genome
Polymorphism
Poly" many "morphe" form

\square

Genotyping chip with raw data -- red or green indicates identical copies of DNA inherited from both parents and yellow indicates copies from each parent are different.

Regional distribution - Lactose intolerance SNPs

Heritability

Linkage disequilibrium (LD)

Genome-wide association studies

	SNP1	SNP2	SNP...
	Cases	Cases	Repeat for all
crimb	Count of G:	Count of G:	SNPS
gadgadadagagas	2104 of 4000	1648 of 4000	
\} $\}\}\}\}\}\}\}\}\}\}$			
Ledres	52.6%	41.2%	
GC CC GG GC CC GC GC GG CC GC GG GC GG			
$\iiint \iiint \iint \Omega$	Controls	Controls	
	Count of G:	Count of G:	
agagagagagagas			
\} $\} 3\} 3\} 3\} 3 \leqslant 2$			
7717771	44.6%	42.2%	
Ladsosessososos			
GC CC GC GC GG CC CC CC GC GC GG GC GG	P-value:	P-value:	
	$5.0 \cdot 10^{-15}$	0.33	

Mendelian disorder

Polygenic

Nature Reviews | Cancer

Addendum: PRS, GRS etc

Box 1.
Definitions of relevant genetic risk prediction terms

Polygenic Score(s) (PGS):
a single value that quantifies an individual's genetic predisposition to a trait. Typically calculated by summing the number of trait-associated alleles in an individual weighted by per-allele effect sizes from a discovery GWAS, and normalized using a relevant population distribution. Sometimes referred to as a genetic score.

Polygenic Risk Score(s) (PRS):
a subset of PGS which is used to estimate risk of disease or other clinically relevant outcomes (binary or discrete). Sometimes referred to as a genetic or genomic risk score (GRS). See categories below.

Who has a higher risk to suffer from stroke or MI within the next 10 years?

Who has a higher risk to to suffer from stroke or MI within the next 10 years?

Computing individual probability

Computing individual probability

Computing individual probability

Computing individual probability

Computing individual probability

Most individuals have a moderate number of risk alleles

PRS calculation

- Step 1:
- Take SNP effects satisfying certain criteria (p-value cutoff, LD independence) from GWAS from discovery cohort for a certain phenotype with associated effect size
- SNP list:
- SNP1 (A) 圆 0.84
- SNP2 (T) 0.21
- \ldots 图 0.31
...
- ...
- ...
- ...
- ...
- ...
- ...
- Step 2:
- For each individual in NDEPENDENT target population, calculate risk score by summing number of alleles, weighted by effect size and dividing through number of alleles:
- Individual 1: SNP1 (AA), SNP2 (TC): 0.156
- Individual 2: SNP1 (TT), SNP2 (TT): 0.175
- Individual 3: SNP1 (AT), SNP2 (CC): 0.03425
- Result: Risk score of each individual - centered at 0, normal distribution

- Step 3:
- Does the overall „score" associate with biomarker, incidence, case/control status etc. in the idenpendent cohort?
linear regression (for continuous traits), logistic regression (for case/control analysis), Cox regression (for time to event analysis)

Model:
Outcome ~ PRS + covariates

Outcome measures: AUC, c-index, variance explained (R2), p-value of association

One of the first high impact PRS on schizophrenia

Power and Predictive Accuracy of Polygenic Risk Scores

Frank Dudbridge*

Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom

Abstract

Polygenic scores have recently been used to summarise genetic effects among an ensemble of markers that do not individually achieve significance in a large-scale association study. Markers are selected using an initial training sample and used to construct a score in an independent replication sample by forming the weighted sum of associated alleles with each subject. Association between a trait and this composite score implies that a genetic signal is present among the selected markers, and the score can then be used for prediction of individual trait values. This approach has been used to obtain evidence of a genetic effect when no single markers are significant, to establish a common genetic basis for related disorders, and to construct risk prediction models. In some cases, however, the desired association or prediction has not been achieved. Here, the power and predictive accuracy of a polygenic score are derived from a quantitative genetics mode as a function of the sizes of the two samples, explained genetic variance, selection thresholds for including a marker in the score, and methods for weighting effect sizes in the score. Expressions are derived for quantitative and discrete traits, the latter allowing for case/control sampling. A novel approach to estimating the variance explained by a marker panel is also proposed. It is shown that published studies with significant association of polygenic scores have been well powered whereas those with negative results can be explained by low sample size. It is also shown that useful levels of prediction may only be approached when predictors are estimated from very large samples, up to an order of magnitude greater than currently available. Therefore, polygenic scores currently have more utility for association testing than predicting complex traits, but prediction will become more feasible as sample sizes continue to grow.

Citation: Dudbridge F (2013) Power and Predictive Accuracy of Polygenic Risk Scores. PLoS Genet 9(3): e1003348. doi:10.1371/journal.pgen.1003348 Editor: Naomi R. Wray, Queensland Institute of Medical Research, Australia
Received May 24, 2012; Accepted January 16, 2013; Published March 21, 2013
Copyright: © 2013 Frank Dudbridge. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Funding: This work was funded by the Medical Research Council, grant number G1000718 (www.mrc.ac.uk). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Competing Interests: The author has declared that no competing interests exist

[^0]
Practical considerations

- Many methods are available that compute PRS directly from GWAS summary statistics

PRSice-2: Polygenic Risk Score software

PRSice (pronounced 'precise') is a Polygenic Risk Score software for calculating, applying, evaluating and plotting the results of polygenic risk scores (PRS) analyses Some of the features include:

1. High-resolution scoring (PRS calculated across a large number of P -value thresholds)
2. Identify Most predictive PRS
3. Empirical P-values output (not subject to over-fitting)
4. Genotyped (PLINK binary) and imputed (Oxford bgen v1.2) data input
5. Biobank-scale genotyped data can be analysed within hours
6. Incorporation of covariates
7. Application across multiple target traits simultaneously
8. Results plotted in several formats (bar plots, high-res plots, quantile plots)
9. PRSet: function for calculating PRS across user-defined pathways / gene sets
lassosum bull pasmo
NewI A standalone version of Lassosum is now available. Please see here for details.
Description
Lassosum is a method for computing LASSO/Elastic Net estimates of a linear regression problem given summary
atistics from GWAS and Genome-wide meta-analyses, accounting for Linkage Disequilibrium (LD), via a referen
panel. The reference panel is assumed to be in PLINK 1 format SUmmary statistics are expected to be loaded into
memory as a data.frame/data.table.
Reference
Mak et al (2017) Polygenic scores via penalized regression on summary statistics. Genetic Epidemiology 41(6) 469-480

Background
LDpred-2 is one of the dedicated PRS programs which is an R package that uses a Bayesian approach to polygenic risk scoring.

Installing LDpred-2
© Note
The script used here is based on LDpred 2 implemented under bigsnpr version 1.4.7

9 Note

For more details, please refer to LDpred 2's homepage

You can install LDpred and its dependencies in R with the following command:

```
install.packages("remotes")
instal1.packages)
```

library(remotes)
remotes: $:$ install_github("https://github.com/privefl/bigsnpr.git")

PRS catalogue

Trait: Ischemic stroke

Cardiovascular disease (Kathiresan, Inouye)

Central illustration: Genomic Risk Score for Coronary Artery Disease

Inouye, M. et al. J Am Coll Cardiol. 2018;72(16):1883-93.

Integrated GRS - metaGRS

Integrated Risk Model:
a risk model for the outcome of interest which combines PRS with other risk factors, such as demographics (often age and sex), anthropometrics, biomarkers, and clinical measurements.

Categories of use for PRS and/or integrated risk models The addition of PRS to existing risk models has several potential applications, summarized below. Each aims to improve individual or subgroup classification such that there is clinical benefit.

metaGRS (Abraham)

b Derivation of the metaGRS for ischaemic stroke

Comparison to lifestyle

Number at risk
\qquad

Genetic risk	Lifestyle		
	Favourable	Intermediate	Unfavourable
Low			
Hazard ratio* (95\% CI)	1 (reference)	$\begin{gathered} 1.36(1.14 \text { to } 1.63), \\ \mathrm{P}=7.3 \times 10^{-04} \end{gathered}$	$\begin{gathered} 1.84(1.44 \text { to } 2.35), \\ \mathrm{P}=8.0 \times 10^{-07} \end{gathered}$
8 year cumulative incidence \dagger (\%) ($95 \% \mathrm{Cl}$)	0.54 (0.47 to 0.60)	0.74 (0.63 to 0.85)	0.95 (0.74 to 1.17)
Intermediate			
Hazard ratio* (95\% CI)	$\begin{gathered} 1.26(1.09 \text { to } 1.46), \\ \mathrm{P}=0.002 \end{gathered}$	$\begin{gathered} 1.62 \text { (1.37 to } 1.92), \\ \mathrm{P}=3.2 \times 10^{-08} \end{gathered}$	$\begin{gathered} 1.85(1.46 \text { to } 2.37), \\ \mathrm{P}=5.4 \times 10^{-07} \end{gathered}$
8 year cumulative incidence \dagger (\%) (95\% CI)	0.67 (0.60 to 0.74)	0.82 (0.71 to 0.93)	0.92 (0.72 to 1.12)
High			
Hazard ratio* (95\% CI)	$\begin{gathered} 1.44(1.25 \text { to } 1.66), \\ \mathrm{P}=7.0 \times 10^{-07} \end{gathered}$	$\begin{gathered} 1.70(1.44 \text { to } 2.01), \\ \mathrm{P}=8.1 \times 10^{-10} \end{gathered}$	$\begin{gathered} 2.30(1.84 \text { to } 2.87), \\ \mathrm{P}=3.3 \times 10^{-13} \end{gathered}$
8 year cumulative incidence \dagger (\%) ($95 \% \mathrm{Cl}$)	0.78 (0.70 to 0.86)	0.91 (0.78 to 1.04)	1.11 (0.89 to 1.33)

Which risk is higher? Monogenic vs. Polygenic

ODYSSEY OUTCOMES - secondary prevention after MI with PCSK9 inhibitor on top of statins
A Lower Genetic Risk
HR: $0.87(95 \% \mathrm{CI}, 0.78-0.98)$
$\mathrm{p}=0.022$

Transethnic considerations

Clinical implementations

\(\left.$$
\begin{array}{l}\text { CAD } \\
\hline \begin{array}{l|ll}\text { Risk } \\
\text { factors }\end{array} \\
\begin{array}{l}\text { Mendelian risk } \\
\text { factors }\end{array} \\
\text { Other factors }\end{array}
$$ \begin{array}{l}Age, sex and family history

Systolic blood pressure, LDL or non-HDL cholesterol and BMI

Lifestyle: smoking, diet and physical activity\end{array}\right]\) Potential clinical utility for PRS | - Adds accuracy to clinical risk predictors (e.g. Framingham risk |
| :--- |
| score, ACC/AHA13 (16)) |
| •Useful for defining most benefit from statin prescription |
| (17,18) |
| •Useful for estimating lifetime risk trajectories (27,56) |

Obesity \& BMI

Risk factors	Mendelian risk factors	MC4R mutations
	Other factors	Age, sex and family history Lifestyle: diet and physical activity
Potential clinical utility for PRS	- Targeting lifestyle interventions and potential treatments (e.g. bariatric surgery) to those at most risk of developing obesity - BMI PRS is enriched in those who have undergone bariatric surgery in UK Biobank (32)	
	- Predicting weight gain trajectories ($32,90,91$) - Useful as a risk predictor of other diseases where obesity is a causal risk factor (79)	

Genome-wide polygenic score for weight and obesity

What does the future look like?

CANCER POLYGENIC RISK SCORE

Publication number: 20190345566
Abstract: The present disclosure relates to a method of determining a risk of developing breast cancer in a subject, the method comprising identifying whether at least 95 single nucleotide polymorphisms (SNPs) from Table A is present in a biological sample from the subject, wherein the presence of a risk allele of a SNP from Table A indicates that the subject has an increased risk of breast cancer, and wherein the presence of an alternative allele indicates that the subject has a decreased risk of breast cancer.
ype: Application
Filed: July 12, 2019
Publication date: November 14, 2019
nventors: Amit V. KHERA, Derek KLARIN, Sekar KATHIRESAN

ATRIAL FIBRILLATION POLYGENIC RISK SCORE

Publication number: 20190345557
Abstract: The present disclosure relates to a method of determining a risk of developing atrial fibrillation in a subject, the method comprising identifying whether at least 95 single nucleotide polymorphisms (SNPs) from Table A is present in a biological sample from the subject, wherein the presence of a risk allele of a SNP from Table A indicates that the subject has an increased risk of atrial fibrillation, and wherein the presence of an alternative allele indicates that the subject has a decreased risk of atrial fibrillation.
Type: Application
Filed: July 12, 2019
Publication date: November 14, 2019
Inventors: AMIT V. KHERA, DEREK KLARIN, SEKAR KATHIRESAN

```
NFLAMMATORY BOWEL DISEASE POLYGENIC RISK SCORE
Publication number: 20190341125
Abstract: The present disclosure relates to a method of determining a risk of developing inflammatory bowel disease in a
subject, the method comprising identifying whether at least }50\mathrm{ single nucleotide polymorphisms (SNPs) from Table A is
present in a biological sample from the subject, wherein the presence of a risk allele of a SNP from Table A indicates that
the subject has an increased risk of inflammatory bowel disease, and wherein the presence of an alternative allele
indicates that the subject has a decreased risk of inflammatory bowel disease.
Type: Application
Filed: July 12, 2019
Publication date: November 7, }201
Inventors: Amit V. KHERA, Derek KLARIN, Sekar KATHIRESAN
```


Pros

$>$ „First risk factor"
> Identify population at high risk from birth - targeted intervention (statins etc.)
> High polygenic risk better predictor than most „conventional risk factors"
> PRS additional risk factor in constructing clinical scores etc.

- Effect sizes similar to monogenic mutations
$>$ Genotyping of SNPs is cheap(ish)

Cons

$>$ Small improvement in general prediction of events (AUC, c-index)
$>$ Not so applicable for general population
> Not (completely) transferrable to other ethnicites
> „just another risk factor"
> Based on „common SNPs" (MAF>1\%)
$>$ Large GWAS studies needed to derive PRS (nowadays not a huge problem)
> Methodological: Overestimation of effect sizes (winner's curse) when using only a handful of SNPs
> Not independent of other „classical" risk factors

Summary

$>$ Genotyping is useful to identify very high risk population - this population will be very small (2\%-5\%)
$>$ For these individuals, PRS is as detrimental as monogenic mutation
> For others, not very useful, hardly can discriminate
> Also: Not useful for non-Europeans or even mixed ancestry
> Primary prevention: Identify high risk individuals - e.g. start treatment at borderline LDL levels
> Secondary prevention: Individuals with high PRS might benefit guiding the intensity of preventive therapies against recurrent events.

Acknowledgements

ISD
Martin Dichgans
Marios Georgakis

[^0]: * E-mail: frank.dudbridge@lshtm.ac.uk

